M1.(a) (i) Voltmeter across terminals with nothing else connected to battery / no additional load.
(ii) This will give zero / virtually no current \checkmark
(b) (i) $\frac{V I}{a I}$

Answer must clearly show power: εI and $V I$, with I cancelling out to give formula stated in the question
(ii) Voltmeter connected across cell terminals \checkmark

Switch open, voltmeter records ε
Switch closed, voltmeter records V
Both statements required for mark \checkmark
Candidates who put the voltmeter in the wrong place can still achieve the second mark providing they give a detailed description which makes it clear that:
To measure emf, the voltmeter should be placed across the cell with the external resistor disconnected
And
To measure V, the voltmeter should be connected across the external resistor when a current is being supplied by the cell
(c) Vary external resistor and measure new value of V, for at least 7 different values of external resistor \checkmark

Precautions - switch off between readings / take repeat readings (to check that emf or internal resistance not changed significantly) \qquad
(d) Efficiency increases as external resistance increases

Explanation
Efficiency $=$ Power in $\mathrm{R} /$ total power generated
$I^{2} R / I^{2}(R+r)=R /(R+r)$
So as R increases the ratio becomes larger or ratio of power in load to power in internal resistance increases \checkmark

M2.(a) 2.9\%

> Allow 3\%
(b) $\frac{1}{3.5 \times 10^{3}}$ seen \checkmark
0.29 mm or $2.9 \times 10^{-4} \mathrm{~m} \checkmark$ must see 2 sf only
(c) $\pm 0.01 \mathrm{~mm} \checkmark$
(d) Clear indication that at least 10 spaces have been measured to give a spacing $=5.24 \mathrm{~mm} \checkmark$
spacing from at least 10 spaces
Allow answer within range ± 0.05
(e) Substitution in $d \sin \theta=n \lambda \checkmark$

The 25 spaces could appear here as n with $\sin \theta$ as 0.135 / 2.5
$d=0.300 \times 10^{.3} \mathrm{~m} \mathrm{so}$
number of lines $=3.34 \times 10^{3} \checkmark$
Condone error in powers of 10 in substitution
Allow ecf from 1-4 value of spacing
(f) Calculates \% difference (4.6\%) \checkmark
and makes judgement concerning agreement \checkmark
Allow ecf from 1-5 value
(g) care not to look directly into the laser beam \checkmark

OR
care to avoid possibility of reflected laser beam
OR
warning signs that laser is in use outside the laboratory \checkmark ANY ONE

M3.(a) Straight line of best fit passing through all error bars \checkmark

(b) $h_{0}=165 \pm 2 \mathrm{~mm} \sqrt{ }$
(c) Clear attempt to determine gradient

Correct readoffs (within $1 / 2$ square) for points on line more than 6 cm apart and correct substitution into gradient equation
$h_{0} k$ gradient $=(-) 0.862 \mathrm{~mm} \mathrm{~K}^{-1}$ and negative sign quoted

Condone negative sign
Accept range -0.95 to -0.85
(d) $K=\frac{\text { candidate value for } h_{0} k}{\text { candidate value for } h_{0}}$
$=5.2 \times 10^{3}$,
Allow ecf from candidate values

K $\sqrt{1}$
Accept range 0.0055 to 0.0049
(e) for $h=8000 \mathrm{~mm}, d^{-1}=\frac{8000}{14.5} \checkmark$

$$
d=1.8 \times 10^{3} \mathrm{~mm} \checkmark
$$

(f) Little confidence in this answer because One of
It is too far to take extrapolation
OR
This is a very small diameter \checkmark

